	Course unit title
	Software Engineering

	Course unit code
	DatZP037

	Type of course unit 
	A part – Compulsory part

	Level of course unit
	2nd cycle (Master)

	Year of study 
	-

	Semester
	I

	Number of ECTS credits
	6

	Name of lecturer(s)
	Anita Jansone, Dr.sc.comp., Dzintars Tomsons, Mg.sc.educ.

	Learning outcomes of the course unit
	After the acquisition of the course students will:

• be able to analyze and select the most appropriate test methods,

• be able to prepare test documentation,

• be able to create code in accordance with change requests and problem reports,

• be able to design, preparation documentation of design for software description,

• be able to maintain software, processing change requests and problem reports,

• be able to implement the software in accordance with user documentation,

• be able to prepare a software test plan,

• be able to prepare specifications for software testing,

• be able to analyze program code for software testing,

• be able to prepare software testing test cases,

• be able to prepare test environment for software testing,

• be able to perform software testing test cases,

• be able to write the software testing process and write problem reports,

• be able to analyze software testing error sources (requirements specification, design of description, etc.).

• be able to prepare an software testing overview document,

• be able to prepare user documentation in accordance with the user's business terminology,

• be able to plan software projects, developing programming guidelines,

• have skills in preparing business documents,

• have skills in preparing user documentation,

• have skills in using information technology industry standards,
• have skills in using the national language,

• have skills in using good programming style,

• have knowledge in software engineering,

•have knowledge in software development project management principles,

•have knowledge in professional vocabulary of software engineering and in two foreign languages,

· know about the applications of object-oriented approach at all stages of the software life cycle as essential part of software engineering;

· be able to apply charts and diagrams of software design;

· be able to design algorithms and data structures;

· be able to design the software system developing and describing the software architecture;

· be able to design the software system developing conceptual and physical models of data;
· be able to design the software system developing implementation model, i.e., hierarchy of classes and functions

	Mode of delivery
	Face-to-face

	Prerequisites and co-requisites
	-

	Recommended optional programme components
	-

	Course contents
	The course provides knowledge and understanding of software testing principles and methods. It provides knowledge of software quality assurance principles. Students acquire skills for testing process organization, implementation, and documentation. The course improves the skills for provision and maintenance of the project quality assurance and corresponding documentation.
The course also includes the most essential topics on applications of object-oriented methods, techniques and tools for system analyses and design. During the course students should to develop some software system using UML

	Course plan
	Software quality. Introduction

Order processing

Definition of requirements. Interviews 

Presentation of interview results and requirement specification

Project development

Presentation of software developed description

Configuration management

Presentation of project configuration management

Provision of quality

Software testing 

Presentation of project testing plan and testing documentation

Project management plan

User documentation 

Presentation of project management plan and user documentation
Object-oriented analysis and modelling as a method of software engineering. Object-oriented software within their lifecycle.

Overview on the modelling language UML.

Applicaiton and class charts

Software requirement analysis and UML application charts

UML class charts. Class identification and description. Rendering, aggregations, relation classes, interfaces, OCL conditions.

Practical tasks concerning creation of UML class charts

System dynamics modelling by using UML modelling language

UML sequence and communication charts UML activities and states charts

Software development patterns

Practical tasks concerning application of software development patterns

Software system architecture and UML charts

System architecture modelling by using UML charts

Software system architecture patterns

Practical tasks concerning application of software system architecture patterns

Software project quality and software development object-oriented methods

	Recommended or required reading
	DiMarzio, J. F. The Debugger’s Handbook 
Auerbach Publications, 2006. Xxiii, 458 p

Kandt, Ronald Kirk Software Engineering Quality Practices 
Auerbach Publications, 2006. Xxii, 256 lpp.

Farrell-Vinay, Peter Manage Software Testing 
Auerbach Publications, 2008. Xxiii, 573 p.

Pressman, Roger S. Software Engineering 
McGraw-Hill, Inc., 1992. XXl, 793 p.

Somerville, Ian Software Engineering 
Addison-Wesley Publishers, Ltd., 1998. XVl,742 p.

Lieberman, Benjamin A. The Art of Software Modeling Auerbach Publications, 2007. Xix, 273 p. 

Pandian, C. Ravindranath Software Metrics 
Auerbach Publications, 2004. Xix, 286 p.

Jorgensen, Paul C. Software testing a craftman’s approach CRC PRESS, 2002. Xix, 359 p. 
Lethbridge Timothy C. Object-Oriented Software Engineering : practical Software Development using UML and Java. - 2nd ed. - London : McGraw-Hill, 2005

Object-Oriented Modeling and Design / James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, William Lorensen. - Upper Saddle River, New Jersey : Prentice-Hall, Inc., 1991

Somerville Ian. Software Engineering. - 5th Ed. - Harlow : Addison-Wesley Publishers, Ltd., 1998

	Planned learning activities and teaching methods
	Lectures, practical classes and students’ independent assignment

	Assessment methods and criteria
	Test 
Successful elaboration and presentation of software documentation: Software requirements specification (SRS), software design description (SDD) and user documentation.

Management plan is successfully elaborated and presented, including the testing procedure, management of configuration and quality provision activities within the project.

Successfully performed testing and presentation of testing documentations (testing examples, testing logbook, problem messages, problem notification messages registration logbook, summary of testing)
All the work tasks should be fulfilled; UML models of a software system should be prepared and defended

	Language of instruction
	English

	Work placement(s)
	N/a


